Demyelinating and nondemyelinating strains of mouse hepatitis virus differ in their neural cell tropism.
نویسندگان
چکیده
Some strains of mouse hepatitis virus (MHV) can induce chronic inflammatory demyelination in mice that mimics certain pathological features of multiple sclerosis. We have examined neural cell tropism of demyelinating and nondemyelinating strains of MHV in order to determine whether central nervous system (CNS) cell tropism plays a role in demyelination. Previous studies demonstrated that recombinant MHV strains, isogenic other than for the spike gene, differ in the extent of neurovirulence and the ability to induce demyelination. Here we demonstrate that these strains also differ in their abilities to infect a particular cell type(s) in the brain. Furthermore, there is a correlation between the differential localization of viral antigen in spinal cord gray matter and that in white matter during acute infection and the ability to induce demyelination later on. Viral antigen from demyelinating strains is detected initially in both gray and white matter, with subsequent localization to white matter of the spinal cord, whereas viral antigen localization of nondemyelinating strains is restricted mainly to gray matter. This observation suggests that the localization of viral antigen to white matter during the acute stage of infection is essential for the induction of chronic demyelination. Overall, these observations suggest that isogenic demyelinating and nondemyelinating strains of MHV, differing in the spike protein expressed, infect neurons and glial cells in different proportions and that differential tropism to a particular CNS cell type may play a significant role in mediating the onset and mechanisms of demyelination.
منابع مشابه
Effect of microtubule disruption on neuronal spread and replication of demyelinating and nondemyelinating strains of mouse hepatitis virus in vitro.
The isogenic host attachment spike protein recombinant demyelinating strain of mouse hepatitis virus (MHV) (RSA59) and the nondemyelinating strain (RSMHV2) differ in their abilities to infect distinct types of neural cells, spread from cell to cell, and induce subsequent demyelination and axonal loss. The differential demyelination properties of RSA59 and RSMHV2 may be a function of spike prote...
متن کاملGliopathy of Demyelinating and Non-Demyelinating Strains of Mouse Hepatitis Virus
Demyelination in the central nervous system induced by neurovirulent strains of Mouse Hepatitis Virus (MHV) is mediated by the viral spike glycoprotein, but it is not clear whether the mechanism of this disease pathology involves direct viral infection of oligodendrocytes. Detailed studies of glial cell tropism of MHV are presented, demonstrating that direct MHV infection of oligodendrocytes di...
متن کاملMacrophage-mediated optic neuritis induced by retrograde axonal transport of spike gene recombinant mouse hepatitis virus.
After intracranial inoculation, neurovirulent mouse hepatitis virus (MHV) strains induce acute inflammation, demyelination, and axonal loss in the central nervous system. Prior studies using recombinant MHV strains that differ only in the spike gene, which encodes a glycoprotein involved in virus-host cell attachment, demonstrated that spike mediates anterograde axonal transport of virus to the...
متن کاملSite-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence.
Strains of the murine coronavirus mouse hepatitis virus type 4 (MHV-4) which contained a mutation in the E2 peplomer glycoprotein were obtained by selection for resistance to neutralization by monoclonal antibodies. Characterization of six variants representing two independent epitopes on E2, E2B and E2C, by in vitro neutralization and antibody-binding assays demonstrated that selection for an ...
متن کاملMechanisms of primary axonal damage in a viral model of multiple sclerosis.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Recent studies have demonstrated that significant axonal injury also occurs in MS patients and correlates with neurological dysfunction, but it is not known whether this neuronal damage is a primary disease process, or occurs only secondary to demyelination. In the current studies, neurotropic strains of mouse hepatiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 82 11 شماره
صفحات -
تاریخ انتشار 2008